Minggu, 02 Januari 2011

Sistem peredaran darah

Sistem peredaran darah atau sistem kardiovaskular adalah suatu sistem organ yang berfungsi memindahkan zat ke dan dari sel. Sistem ini juga menolong stabilisasi suhu dan pH tubuh (bagian dari homeostasis). Ada tiga jenis sistem peredaran darah: tanpa sistem peredaran darah, sistem peredaran darah terbuka, dan sistem peredaran darah tertutup. sistem peredaran darah,yang merupakan juga bagian dari kinerja jantung dan jaringan pembuluh darah (sistem kardiovaskuler) dibentuk. Sistem ini menjamin kelangsungan hidup organisme, didukung oleh metabolisme setiap sel dalam tubuh dan mempertahankan sifat kimia dan fisiologis cairan tubuh. Pertama, darah mengangkut oksigen dari paru-paru ke sel dan karbon dioksida dalam arah yang berlawanan (lihat respirasi). Kedua, yang diangkut dari nutrisi yang berasal pencernaan seperti lemak, gula dan protein dari saluran pencernaan dalam jaringan masing-masing untuk mengkonsumsi, sesuai dengan kebutuhan mereka, diproses atau disimpan. Metabolit yang dihasilkan atau produk limbah (seperti urea atau asam urat) yang kemudian diangkut ke jaringan lain atau organ-organ ekskresi (ginjal dan usus besar). Juga mendistribusikan darah seperti hormon, sel-sel kekebalan tubuh dan bagian-bagian dari sistem pembekuan dalam tubuh.

1.Arteri
Pembuluh nadi atau arteri adalah pembuluh darah berotot yang membawa darah dari jantung. Fungsi ini bertolak belakang dengan fungsi pembuluh balik yang membawa darah menuju jantung.
Sistem sirkulasi sangat penting dalam mempertahankan hidup. Fungsi utamanya adalah menghantarkan oksigen dan nutrisi ke semua sel, serta mengangkut zat buangan seperi karbon dioksida. Pada negara berkembang, dua kejadian kematian utama disebabkan oleh infark miokardium dan stroke pada sistem pembuluh nadi, misalnya


Penggambaran

Sistem pembuluh nadi memiliki bagian tekanan yang tinggi pada sistem sirkulasi. Tekanan darah biasanya menunjukkan tekanan pada pembuluh nadi utama. Tekanan pada saat jantung mengembang dan darah masuk ke jantung disebut diastol. Tekanan sistol berarti tekanan darah saat jantung berkontraksi dan daeah keluar jantung. Tekanan darah ini dapat dikur dengan tensimeter atau sfigmomanometer.

Anatomi

Lapisan terluar disebut tunika adventitia yang tersusun dari jaringan penyambung. Di lapisan selanjutnya terdapat tunika media yang tersusun atas otot polos dan jaringan elastis. Lapisan terdalam adalah tunika intima yang tersusun atas sel endothelial. Darah mengalir di dalam pada lumen.




Jenis pembuluh nadi :

Arteri pulmonaris

Pembuluh ini membawa darah yang telah dideoksigenasi yang baru saja dialirkan dari paru-paru.




Arteri sistemik

Arteri sistemik membawa darah menuju arteriol dan kemudian ke pembuluh kapiler, di mana zat nutrisi dan gas ditukarkan.

Aorta

Aorta adalah pembuluh nadi terbesar dalam tubuh yang keluar dari ventrikel jantung dan membawa banyak oksigen.

Arteriol

Arteriol adalah pembuluh nadi terkecil yang berhubungan dengan pembuluh kapiler.

Pembuluh kapiler

Pembuluh ini bukan pembuluh nadi sesungguhnya. Di sinilah terjadinya pertukaran zat yang menjadi fungsi utama sistem sirkulasi. Pembuluh kapiler adalah pembuluh yang menghubungkan cabang-cabang pembuluh nadi dan cabang-cabang pembuluh balik yang terkecil dengan sel-sel tubuh. Pembuluh nadi dan pembuluh balik itu bercabang-cabang, dan ukuran cabang-cabang pembuluh itu semakin jauh dari jantung semakin kecil. Pembuluh kapiler sangat halus dan berdinding tipis.

Vena

Pembuluh balik atau vena adalah pembuluh yang membawa darah menuju jantung. Darahnya banyak mengandung karbon dioksida. Umumnya terletak dekat permukaan tubuh dan tampak kebiru-biruan. Dinding pembuluhnya tipis dan tidak elastis. jika diraba, denyut jantungnya tidak terasa. Pembuluh vena mempunyai katup sepanjang pembuluhnya. Katup ini berfungsi agar darah tetap mengalir satu arah. Dengan adanya katup tersebut, aliran darah tetap mengalir menuju jantung. Jika vena terluka, darah tidak memancar tetapi merembes.
Dari seluruh tubuh, pembuluh darah balik bermuara menjadi satu pembuluh darah balik besar, yang disebut vena cava. Pembuluh darah ini masuk ke jantung melalui serambi kanan. Setelah terjadi pertukaran gas di paru-paru, darah mengalir ke jantung lagi melalui vena paru-paru. Pembuluh vena ini membawa darah yang kaya oksigen. Jadi, darah dalam semua pembuluh vena banyak mengandung karbon dioksida kecuali vena pulmonalis.
Salah satu penyakit yang menyerang pembuluh balik adalah varises.

Jantung

Jantung (bahasa Latin, cor) adalah sebuah rongga, rongga organ berotot yang memompa darah lewat pembuluh darah oleh kontraksi berirama yang berulang. Istilah kardiak berarti berhubungan dengan jantung, dari kata Yunani cardia untuk jantung. Jantung adalah salah satu organ manusia yang berperan dalam sistem peredaran darah.



Permukaan Jantung

Bagian-bagian dari jantung
Ukuran jantung manusia kurang lebih sebesar kepalan tangan seorang laki-laki dewasa. Jantung adalah satu otot tunggal yang terdiri dari lapisan endothelium. Jantung terletak di dalam rongga thoracic, di balik tulang dada/sternum. Struktur jantung berbelok ke bawah dan sedikit ke arah kiri.
Jantung hampir sepenuhnya diselubungi oleh paru-paru, namun tertutup oleh selaput ganda yang bernama perikardium, yang tertempel pada diafragma. Lapisan pertama menempel sangat erat kepada jantung, sedangkan lapisan luarnya lebih longgar dan berair, untuk menghindari gesekan antar organ dalam tubuh yang terjadi karena gerakan memompa konstan jantung.
Jantung dijaga di tempatnya oleh pembuluh-pembuluh darah yang meliputi daerah jantung yang merata/datar, seperti di dasar dan di samping. Dua garis pembelah (terbentuk dari otot) pada lapisan luar jantung menunjukkan di mana dinding pemisah di antara sebelah kiri dan kanan serambi (atrium) & bilik (ventrikel).

Struktur Internal Jantung

Secara internal, jantung dipisahkan oleh sebuah lapisan otot menjadi dua belah bagian, dari atas ke bawah, menjadi dua pompa. Kedua pompa ini sejak lahir tidak pernah tersambung. Belahan ini terdiri dari dua rongga yang dipisahkan oleh dinding jantung. Maka dapat disimpulkan bahwa jantung terdiri dari empat rongga, serambi kanan & kiri dan bilik kanan & kiri.
Dinding serambi jauh lebih tipis dibandingkan dinding bilik karena bilik harus melawan gaya gravitasi bumi untuk memompa dari bawah ke atas, khususnya di aorta, untuk memompa ke seluruh bagian tubuh yang memiliki pembuluh darah. Dua pasang rongga (bilik dan serambi bersamaan) di masing-masing belahan jantung disambungkan oleh sebuah katup. Katup di antara serambi kanan dan bilik kanan disebut katup trikuspidalis atau katup berdaun tiga. Sedangkan katup yang ada di antara serambi kiri dan bilik kiri disebut katup mitralis atau katup berdaun dua.

Cara Kerja Jantung

Pada saat berdenyut, setiap ruang jantung mengendur dan terisi darah (disebut diastol). Selanjutnya jantung berkontraksi dan memompa darah keluar dari ruang jantung (disebut sistol). Kedua serambi mengendur dan berkontraksi secara bersamaan, dan kedua bilik juga mengendur dan berkontraksi secara bersamaan.
Darah yang kehabisan oksigen dan mengandung banyak karbondioksida (darah kotor) dari seluruh tubuh mengalir melalui dua vena berbesar (vena kava) menuju ke dalam ventrikel kanan. Setelah atrium kanan terisi darah, dia akan mendorong darah ke dalam ventrikel kanan.
Darah dari ventrikel kanan akan dipompa melalui katup pulmoner ke dalam arteri pulmonalis, menuju ke paru-paru. Darah akan mengalir melalui pembuluh yang sangat kecil (kapiler) yang mengelilingi kantong udara di paru-paru, menyerap oksigen dan melepaskan karbondioksida selanjutnya dialirkan.
Darah yang kaya akan oksigen mengalir di dalam vena pulmonalis menuju ke atrium kiri. Peredaran darah di antara bagian kanan jantung, paru-paru dan atrium kiri disebut sirkulasi pulmoner.
Darah dalam atrium kiri akan didorong menuju ventrikel kiri, yang selanjutnya akan memompa darah bersih ini melewati katup aorta masuk ke dalam aorta (arteri terbesar dalam tubuh). Darah kaya oksigen ini disediakan untuk seluruh tubuh, kecuali paru-paru.

Seputar Kesehatan Jantung

Jantung merupakan salah satu organ terpenting tubuh, berakibat pada kematian. Masalah pada jantung dibagi karena kegagalan organ jantung seringkali hampir menjadi dua bagian, yaitu penyakit jantung dan serangan jantung.

Penyakit Jantung

Penyakit jantung adalah sebuah kondisi yang menyebabkan Jantung tidak dapat melaksanakan tugasnya dengan baik. Hal-hal tersebut antara lain:
  • Otot jantung yang lemah. Ini adalah kelainan bawaan sejak lahir. Otot jantung yang lemah membuat penderita tak dapat melakukan aktivitas yang berlebihan, karena pemaksaan kinerja jantung yang berlebihan akan menimbulkan rasa sakit di bagian dada, dan kadangkala dapat menyebabkan tubuh menjadi nampak kebiru-biruan. Penderita lemah otot jantung ini mudah pingsan.
  • Adanya celah antara serambi kanan dan serambi kiri, oleh karena tidak sempurnanya pembentukan lapisan yang memisahkan antara kedua serambi saat penderita masih di dalam kandungan. Hal ini menyebabkan darah bersih dan darah kotor tercampur. Penyakit ini juga membuat penderita tidak dapat melakukan aktivitas yang berat, karena aktivitas yang berat hampir dapat dipastikan akan membuat tubuh penderita menjadi biru dan sesak nafas, walaupun tidak menyebabkan rasa sakit di dada. Ada pula variasi dari penyakit ini, yakni penderitanya benar-benar hanya memiliki satu buah serambi.

Penyakit Jantung

Penyakit jantung adalah sebuah kondisi yang menyebabkan Jantung tidak dapat melaksanakan tugasnya dengan baik. Hal-hal tersebut antara lain:
  • Otot jantung yang lemah. Ini adalah kelainan bawaan sejak lahir. Otot jantung yang lemah membuat penderita tak dapat melakukan aktivitas yang berlebihan, karena pemaksaan kinerja jantung yang berlebihan akan menimbulkan rasa sakit di bagian dada, dan kadangkala dapat menyebabkan tubuh menjadi nampak kebiru-biruan. Penderita lemah otot jantung ini mudah pingsan.
  • Adanya celah antara serambi kanan dan serambi kiri, oleh karena tidak sempurnanya pembentukan lapisan yang memisahkan antara kedua serambi saat penderita masih di dalam kandungan. Hal ini menyebabkan darah bersih dan darah kotor tercampur. Penyakit ini juga membuat penderita tidak dapat melakukan aktivitas yang berat, karena aktivitas yang berat hampir dapat dipastikan akan membuat tubuh penderita menjadi biru dan sesak nafas, walaupun tidak menyebabkan rasa sakit di dada. Ada pula variasi dari penyakit ini, yakni penderitanya benar-benar hanya memiliki satu buah serambi.

Penanggulangan

Tidak ada penanggulangan yang lebih baik untuk mencegah penyakit dan serangan jantung, di samping gaya hidup sehat (seperti sering bangun lebih pagi, tidak sering tidur terlalu larut malam, dan menghindari rokok dan minuman beralkohol), pola makanan yang sehat (memperbanyak makan makanan berserat dan bersayur, serta tidak terlalu banyak makan makanan berlemak dan berkolesterol tinggi), dan olah raga yang teratur dan tidak berlebihan. Namun, ada beberapa zat yang dipercaya mampu memperkecil atau memperbesar risiko penyakit dan serangan jantung, di antara lain:
  • Beberapa peneliti menyebutkan bahwa zat allicin di dalam bawang putih ternyata dapat membantu menjaga kesehatan jantung. Penelitian tersebut menunjukkan bahwa oleh khasiat zat allicin, ketegangan pembuluh darah berkurang 72%[2]. Namun beberapa peneliti lain ada juga yang menyatakan bahwa tidak ada hubungan antara bawang putih dengan kesehatan jantung. Dalam studi yang dilakukan pada 90 perokok berbadan gemuk, para peneliti Eropa mendapati bahwa tambahan bubuk bawang putih selama 3 bulan tak memperlihatkan perubahan dalam kadar kolesterol mereka atau beberapa tanda lain risiko penyakit jantung[3].
  • Studi membuktikan bahwa mengurangi merokok tidak mengurangi risiko penyakit jantung. Untuk benar-benar mengurangi risiko penyakit jantung, seseorang harus benar-benar berhenti merokok [4].
  • Penemuan yang diterbitkan dalam Journal of the American College of Cardiology mengungkapkan konsumsi suplemen Vitamin C dapat mengurangi risiko penyakit jantung[5].
  • Penelitian menunjukkan, mengurangi konsumsi garam dapat mengurangi risiko penyakit jantung. Konsumsi garam dapat meningkatkan tekanan darah. Pada percobaan diet rendah garam menunjukkan risiko penyakit jantung hingga 25% dan risiko serangan jantung hingga 20%
  • Konsumsi makanan-makanan yang dapat menjaga kesehatan jantung seperti Salmon, Tomat, Minyak Zaitun, Gandum, Almond, dan Apel [6] 
 Darah
Darah adalah cairan yang terdapat pada semua makhluk hidup(kecuali tumbuhan) tingkat tinggi yang berfungsi mengirimkan zat-zat dan oksigen yang dibutuhkan oleh jaringan tubuh, mengangkut bahan-bahan kimia hasil metabolisme, dan juga sebagai pertahanan tubuh terhadap virus atau bakteri. Istilah medis yang berkaitan dengan darah diawali dengan kata hemo- atau hemato- yang berasal dari bahasa Yunani haima yang berarti darah.
Pada serangga, darah (atau lebih dikenal sebagai hemolimfe) tidak terlibat dalam peredaran oksigen. Oksigen pada serangga diedarkan melalui sistem trakea berupa saluran-saluran yang menyalurkan udara secara langsung ke jaringan tubuh. Darah serangga mengangkut zat ke jaringan tubuh dan menyingkirkan bahan sisa metabolisme.
Pada hewan lain, fungsi utama darah ialah mengangkut oksigen dari paru-paru atau insang ke jaringan tubuh. Dalam darah terkandung hemoglobin yang berfungsi sebagai pengikat oksigen. Pada sebagian hewan tak bertulang belakang atau invertebrata yang berukuran kecil, oksigen langsung meresap ke dalam plasma darah karena protein pembawa oksigennya terlarut secara bebas. Hemoglobin merupakan protein pengangkut oksigen paling efektif dan terdapat pada hewan-hewan bertulang belakang atau vertebrata. Hemosianin, yang berwarna biru, mengandung tembaga, dan digunakan oleh hewan crustaceae. Cumi-cumi menggunakan vanadium kromagen (berwarna hijau muda, biru, atau kuning oranye).

Burung Hantu

Burung hantu adalah kelompok burung yang merupakan anggota ordo Strigiformes. Burung ini termasuk golongan burung buas (karnivora, pemakan daging) dan merupakan hewan malam (nokturnal). Seluruhnya, terdapat sekitar 222 spesies yang telah diketahui, yang menyebar di seluruh dunia kecuali Antartika, sebagian besar Greenland, dan beberapa pulau-pulau terpencil.


Di dunia barat, hewan ini dianggap simbol kebijaksanaan, tetapi di beberapa tempat di Indonesia dianggap pembawa pratanda maut, maka namanya Burung Hantu. Walau begitu tidak di semua tempat di Nusantara burung ini disebut sebagai burung hantu. Di Jawa misalnya, nama burung ini adalah darès atau manuk darès yang tidak ada konotasinya dengan maut atau hantu. Di Sulawesi Utara, burung hantu dikenal dengan nama Manguni.
Burung hantu dikenal karena matanya besar dan menghadap ke depan, tak seperti umumnya jenis burung lain yang matanya menghadap ke samping. Bersama paruh yang bengkok tajam seperti paruh elang dan susunan bulu di kepala yang membentuk lingkaran wajah, tampilan "wajah" burung hantu ini demikian mengesankan dan kadang-kadang menyeramkan. Apalagi leher burung ini demikian lentur sehingga wajahnya dapat berputar 180 derajat ke belakang.
Umumnya burung hantu berbulu burik, kecoklatan atau abu-abu dengan bercak-bercak hitam dan putih. Dipadukan dengan perilakunya yang kerap mematung dan tidak banyak bergerak, menjadikan burung ini tidak mudah kelihatan; begitu pun ketika tidur di siang hari di bawah lindungan daun-daun.
Ekor burung hantu umumnya pendek, namun sayapnya besar dan lebar. Rentang sayapnya mencapai sekitar tiga kali panjang tubuhnya.

Kebiasaan

Kebanyakan jenis burung hantu berburu di malam hari, meski sebagiannya berburu ketika hari remang-remang di waktu subuh dan sore (krepuskular) dan ada pula beberapa yang berburu di siang hari.
Mata yang menghadap ke depan, sehingga memungkinkan mengukur jarak dengan tepat; paruh yang kuat dan tajam; kaki yang cekatan dan mampu mencengkeram dengan kuat; dan kemampuan terbang tanpa berisik, merupakan modal dasar bagi kemampuan berburu dalam gelapnya malam. Beberapa jenis bahkan dapat memperkirakan jarak dan posisi mangsa dalam kegelapan total, hanya berdasarkan indera pendengaran dibantu oleh bulu-bulu wajahnya untuk mengarahkan suara.
Burung hantu berburu aneka binatang seperti serangga, kodok, tikus, dan lain-lain.
Sarang terutama dibuat di lubang-lubang pohon, atau di antara pelepah daun bangsa palem. Beberapa jenis juga kerap memanfaatkan ruang-ruang pada bangunan, seperti di bawah atap atau lubang-lubang yang kosong. Bergantung pada jenisnya, bertelur antara satu hingga empat butir, kebanyakan berwarna putih atau putih berbercak.

Ragam Jenis

Ordo Strigiformes terdiri dari dua suku (familia), yakni suku burung serak atau burung-hantu gudang (Tytonidae) dan suku burung hantu sejati (Strigidae). Banyak dari jenis-jenis burung hantu ini yang merupakan jenis endemik (menyebar terbatas di satu pulau atau satu region saja) di Indonesia, terutama dari marga Tyto, Otus, dan Ninox.
Beberapa contohnya adalah:

fotosintetis

Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari.[1] Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi.[1] Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi.[1] Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof.[1] Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi.[1] Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.[1]

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an.[2] Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu.[2] Dari penelitiannya, Helmont menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air.[2] Namun, pada tahun 1727, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia mengemukakan bahwa sebagian makanan tumbuhan berasal dari atmosfer dan cahaya yang terlibat dalam proses tertentu.[2] Pada saat itu belum diketahui bahwa udara mengandung unsur gas yang berlainan.[1]
Pada tahun 1771, Joseph Priestley, seorang ahli kimia dan pendeta berkebangsaan Inggris, menemukan bahwa ketika ia menutup sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar.[3] Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah "merusak" udara dalam toples itu dan menyebabkan matinya tikus.[3] Ia kemudian menunjukkan bahwa udara yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan.[3] Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan.[3]
Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley.[4] Ia memperlihatkan bahwa cahaya matahari berpengaruh pada tumbuhan sehingga dapat "memulihkan" udara yang "rusak".[5] Ia juga menemukan bahwa tumbuhan juga 'mengotori udara' pada keadaan gelap sehingga ia lalu menyarankan agar tumbuhan dikeluarkan dari rumah pada malam hari untuk mencegah kemungkinan meracuni penghuninya.[5]
Akhirnya di tahun 1782, Jean Senebier, seorang pastor Perancis, menunjukkan bahwa udara yang “dipulihkan” dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis.[1] Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan "pemulihan" udara.[1] Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air.[1] Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa).[6]

Pigmen

Struktur kloroplas:
1. membran luar
2. ruang antar membran
3. membran dalam (1+2+3: bagian amplop)
4. stroma
5. lumen tilakoid (inside of thylakoid)
6. membran tilakoid
7. granum (kumpulan tilakoid)
8. tilakoid (lamella)
9. pati
10. ribosom
11. DNA plastida
12. plastoglobula
Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik.[7] Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.[7] Pada percobaan Jan Ingenhousz, dapat diketahui bahwa intensitas cahaya mempengaruhi laju fotosintesis pada tumbuhan.[5] Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiap spektrum cahaya.[5] Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut.[5] Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.[5]
Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar.[8] Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil.[8] Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.[8]

Kloroplas

Hasil mikroskop elektron dari kloroplas
Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang.[9] Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis.[10] Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma.[9] Stroma ini dibungkus oleh dua lapisan membran.[9] Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli.[9] Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum).[9] Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid.[9] Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid.[11] Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun perak (Cu).[8] Pigmen fotosintetik terdapat pada membran tilakoid.[8] Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma.[8] Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.[8]

Fotosistem

Fotosistem adalah suatu unit yang mampu menangkap energi cahaya matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron.[8] Di dalam kloroplas terdapat beberapa macam klorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga.[8] Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.[12]
Klorofil a berada dalam bagian pusat reaksi.[13] Klorofil ini berperan dalam menyalurkan elektron yang berenergi tinggi ke akseptor utama elektron.[13] Elektron ini selanjutnya masuk ke sistem siklus elektron.[13] Elektron yang dilepaskan klorofil a mempunyai energi tinggi sebab memperoleh energi dari cahaya yang berasal dari molekul perangkat pigmen yang dikenal dengan kompleks antena.[12]
Fotosistem sendiri dapat dibedakan menjadi dua, yaitu fotosistem I dan fotosistem II.[12] Pada fotosistem I ini penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap cahaya dengan panjang gelombang 700 nm sehingga klorofil a disebut juga P700.[14] Energi yang diperoleh P700 ditransfer dari kompleks antena.[14] Pada fotosistem II penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap panjang gelombang 680 nm sehingga disebut P680.[15] P680 yang teroksidasi merupakan agen pengoksidasi yang lebih kuat daripada P700.[15] Dengan potensial redoks yang lebih besar, akan cukup elektron negatif untuk memperoleh elektron dari molekul-molekul air.[8]

Fotosintesis pada tumbuhan

Tumbuhan bersifat autotrof.[4] Autotrof artinya dapat mensintesis makanan langsung dari senyawa anorganik.[4] Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini:
6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2

Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar.[4] Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan.[4] Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas.[4] Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia.[4]
Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil.[4] Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas.[4] klorofil menyerap cahaya yang akan digunakan dalam fotosintesis.[4] Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun.[4] Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya.[4] Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis.[4] Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.[4]

Fotosintesis pada alga dan bakteri

Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel.[16] Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama.[16] Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi.[16] Semua alga menghasilkan oksigen dan kebanyakan bersifat autotrof.[16] Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain.[16]

Proses

Hingga sekarang fotosintesis masih terus dipelajari karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini.[17] Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.[17]
Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun.[17] Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini.[18] Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma.[17] Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.[17]
Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).[19]
Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma.[19] Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2).[19] Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH).[19] Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang.[19] Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula.[19] Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm).[19] Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm).[20] Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis.[20] Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis.[20] Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu.[20] Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda.[20] Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah.[20] Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang.[20] Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron.[13] Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.

Reaksi terang

Reaksi terang dari fotosintesis pada membran tilakoid
Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2.[21] Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.[21]
Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II.[22] Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.[22]
Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil.[22] Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim.[22] Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2.[22] Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks.[21] Reaksi keseluruhan yang terjadi di PS II adalah[22]:
2H2O + 4 foton + 2PQ + 4H- → 4H+ + O2 + 2PQH2

Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC).[22] Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid.[22] Reaksi yang terjadi pada sitokrom b6-f kompleks adalah[22]:
2PQH2 + 4PC(Cu2+) → 2PQ + 4PC(Cu+) + 4 H+ (lumen)

Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I.[22] Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu.[22] Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin.[22] Reaksi keseluruhan pada PS I adalah[22]:
Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+)

Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH.[22] Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase.[22] Reaksinya adalah[22]:
4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH

Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase.[1] ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid.[1] Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP.[1] Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut[1]:
Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2

Reaksi gelap

Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack.[23] Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat.[23] Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3.[23] Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco.[23] Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate carboxilase.[23]

Siklus Calvin-Benson

Siklus Calvin-Benson
Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat.[23] RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh peningkatan pH.[23] Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membran tilakoid.[23] Kedua, reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jika kloroplas diberi cahaya.[23] Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.[23]
Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas.[13] Fikasasi CO2 melewati proses karboksilasi, reduksi, dan regenerasi.[24] Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat(3-PGA).[24] Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida).[24] Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP.[24] ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan.[24] Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron.[24] Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.[24]
Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan yang berdifusi secara konstan ke dalam dan melalui stomata.[25] Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2 yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.[25]
Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida.[13] Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar.[13] Sistem ini membuat jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol.[13] Triosa fosfat digunakan sitosol untuk membentuk sukrosa.[13][25]

Siklus Hatch-Slack

Siklus Hatch-Slack
Berdasarkan cara memproduksi glukosa, tumbuhan dapat dibedakan menjadi tumbuhan C3 dan C4.[26] Tumbuhan C3 merupakan tumbuhan yang berasal dari daerah subtropis.[26] Tumbuhan ini menghasilkan glukosa dengan pengolahan CO2 melalui siklus Calvin, yang melibatkan enzim Rubisco sebagai penambat CO2.[26] Tumbuhan C3 memerlukan 3 ATP untuk menghasilkan molekul glukosa.[26] Namun, ATP ini dapat terpakai sia-sia tanpa dihasilkannya glukosa.[27] Hal ini dapat terjadi jika ada fotorespirasi, di mana enzim Rubisco tidak menambat CO2 tetapi menambat O2.[27] Tumbuhan C4 adalah tumbuhan yang umumnya ditemukan di daerah tropis.[27] Tumbuhan ini melibatkan dua enzim di dalam pengolahan CO2 menjadi glukosa.[27] Enzim phosphophenol pyruvat carboxilase (PEPco) adalah enzim yang akan mengikat CO2 dari udara dan kemudian akan menjadi oksaloasetat.[27] Oksaloasetat akan diubah menjadi malat.[27] Malat akan terkarboksilasi menjadi piruvat dan CO2.[27] Piruvat akan kembali menjadi PEPco, sedangkan CO2 akan masuk ke dalam siklus Calvin yang berlangsung di sel bundle sheath dan melibatkan enzim RuBP.[27] Proses ini dinamakan siklus Hatch Slack, yang terjadi di sel mesofil.[28] Dalam keseluruhan proses ini, digunakan 5 ATP.[28]

Faktor penentu laju fotosintesis

Proses fotosintesis dipengaruhi beberapa faktor yaitu faktor yang dapat mempengaruhi secara langsung seperti kondisi lingkungan maupun faktor yang tidak mempengaruhi secara langsung seperti terganggunya beberapa fungsi organ yang penting bagi proses fotosintesis.[1] Proses fotosintesis sebenarnya peka terhadap beberapa kondisi lingkungan meliputi kehadiran cahaya matahari, suhu lingkungan, konsentrasi karbondioksida (CO2).[1] Faktor lingkungan tersebut dikenal juga sebagai faktor pembatas dan berpengaruh secara langsung bagi laju fotosintesis.[29]
Faktor pembatas tersebut dapat mencegah laju fotosintesis mencapai kondisi optimum meskipun kondisi lain untuk fotosintesis telah ditingkatkan, inilah sebabnya faktor-faktor pembatas tersebut sangat mempengaruhi laju fotosintesis yaitu dengan mengendalikan laju optimum fotosintesis.[29] Selain itu, faktor-faktor seperti translokasi karbohidrat, umur daun, serta ketersediaan nutrisi mempengaruhi fungsi organ yang penting pada fotosintesis sehingga secara tidak langsung ikut mempengaruhi laju fotosintesis.[30]
Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis[30] :
  1. Intensitas cahaya
    Laju fotosintesis maksimum ketika banyak cahaya.
  2. Konsentrasi karbon dioksida
    Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.
  3. Suhu
    Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
  4. Kadar air
    Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
  5. Kadar fotosintat (hasil fotosintesis)
    Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.
  6. Tahap pertumbuhan
    Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.